
Further Graphics

Left: Jose Maria de Espona, REM INFOGRAFICA, 1997 - Metaball model built with MetaReyes 3.0

Right: CD-MPM: Continuum Damage Material Point Methods for Dynamic Fracture Animation, ACM
Trans. Graph., Vol. 38, No. 4, Article 119. July 2019

1
Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd

Implicit Surfaces
Particle Systems

Implicit surfaces

2

Image credit: W. Lorensen. Marching Through the Visible Man, 1995

Signed Distance Fields are just one
example of the broad class of implicit
surfaces.

An implicit surface is any description of a
set of points which satisfy the equation

F(P) = 0
where P ∈ ℝ3 for a 3D surface. Image credit: Balázs Csebfalvi, Balázs Tóth, Stefan Bruckner, Meister Eduard Gröller

Illumination-Driven Opacity Modulation for Expressive Volume Rendering,
Proceedings of Vision, Modeling & Visualization 2012, pages 103-109. November 2012.

https://www.cg.tuwien.ac.at/research/publications/2012/Csebfalvi-2012-IOM/

Implicit surfaces in modern animation:
Metaballs (sometimes called “metaball modeling”, “force functions”, “blobby modeling”…)

Metaballs are an early (1980s) technique for creating smooth,
blobby, organic surfaces.
Metaballs leverage the fact that if two functions F(P)=0 and
G(P)=0 describe implicit surfaces, then F(P)+G(P)=0 describes
a surface blending both shapes.
Metaball models are decsribed by a set of control points. Each
control point p generates a ‘field’ of force, which drops off as a
function F(r) where r is the scalar radius from the control point.
The implicit surface is the set of all points in space where the
sum of these field equals a chosen constant:

S = {x∊ℝ3 | ∑pF(|x-p|) = 𝜏}
The surface thus solves the expression:

∑pF(|x-p|) - 𝜏 = 0

3

Common force functions:
● “Blobby Molecules” – Jim Blinn

F(r) = a e-br^2

● “Metaballs” – Jim Blinn
 a(1- 3r2 / b2) 0 ≤ r < b/3

F(r) = (3a/2)(1-r/b)2 b/3 ≤ r < b
 0 b ≤ r

● “Soft Objects” – Wyvill & Wyvill
F(r) = a(1 - 4r6/9b6 + 17r4/9b4 - 22r2 / 9b2)

Metaball modeling
force functions

4

Metaball modeling

Jim Blinn first used
blobby models to
animate electron orbital
shells (1982).
Today animators and
artists use blobby
modeling to quickly
create bumpy, organic
surfaces.

5

Jose Maria de Espona, REM INFOGRAFICA, 1997

Polygonizing implicit surfaces:
Marching Cubes
The Marching cubes algorithm (Lorensen
& Cline, 1985) finds a set of polygons
approximating a surface:
1. Fire a ray from any point known to be

inside the surface.
2. Using Newton’s method or binary

search, find one place where the ray
crosses the surface.

3. Place a cube centered at the
intersection point: some vertices will
be ‘hot’ (inside the surface), others
‘cold’ (outside).

4. While there exists a cube which has at
least one hot vertex and at least one
cold vertex on a side and no
neighboring cube sharing that face,
create a neighboring cube at that face.

Marching cubes is common in medical imaging such as
MRI scans. It was first demonstrated (and patented!)
by researchers at GE in 1984, modeling a human spine.

6

Cubes → Polygons

Each edge of the
cube that has 1 hot
and 1 cold corner,
must be crossed
by the isocline of the surface

The simplest polygonization is
to add a polygon face joining
the midpoints of each crossed
edge (but we can do better)

7

Cubes → Polygons

8

1 2

8 4

int flags =
 (isHot(T_L) ? 1 : 0) |
 (isHot(T_R) ? 2 : 0) |
 (isHot(B_R) ? 4 : 0) |
 (isHot(B_L) ? 8 : 0);

switch (flags) {
 case 1 :
 // left side ←→ top;
 ...
 case 3 :
 // left side ←→ right;
 ...
 case 10 :
 // top ←→ right side,
 // AND,
 // bottom ←→ left side
 ...
}

Marching cubes squares in action

9

Cubes → Polygons
In 3D, there are fifteen possible
configurations (up to symmetry) of
hot/cold vertices in the cube. →
● With rotations, that’s 256 cases

Beware: there are ambiguous cases in
the polygonization which must be
addressed consistently. ↓

Images courtesy of Diane Lingrand

10

http://www.polytech.unice.fr/~lingrand/MarchingCubes/algo.html

Smoothing the polygonization
The simplest polygonization uses a polygon face joining the midpoints of each
crossed edge P1 → P2:

● P = P1 + ½ (P2 - P1)

The implicit surface can be more closely approximated by linearly interpolating
along the edges of the cube by the weights of the relative values of the force
function:

● t = (0.5 - F(P1)) / (F(P2) - F(P1))
● P = P1 + t (P2 - P1)

Same implicit surface 11

Image credit: J W Laprairie, Mark & Hamilton, Howard. (2018).
Isovox: A Brick-Octree Approach to Indirect Visualization

Polygonizing implicit surfaces:
Octrees

The octree is a recursive data structure which
subdivides space to “home in” on an implicit
surface. Each node of an octree is a cube,
containing 0 or 8 child octrees.
● Each node of the tree occupies a cube in space
● Each node evaluates the force function F(v) at

each of its vertices v
● Recursive definition: subdivide the cube into 8

equal-sized children for every node where at
least 1 corner vertex is inside the surface (‘hot’)
and at least 1is outside (‘cold’)

12

Progressive refinement: Octrees

To display a set of octrees, convert the octrees
into polygons.

● If some corners are “hot” (inside the surface) and
others are “cold” (outside) then the isosurface
must cross the cube edges in between.

● The set of midpoints of adjacent crossed edges
forms one or more rings, which can be
triangulated. The normal is known from the
inside/outside direction on the edges.

To refine the polygonization, subdivide
recursively; discard any child whose vertices
are all inside or all outside.

13

Octree refinement in action

14

Particle systems
Particle systems are a monte-carlo style

technique which uses thousands (or
millions) of tiny finite elements to
create large-scale structural and
visual effects.

Particle systems are used for hair, fire,
cloth, smoke, water, spores, clouds,
explosions, energy glows, in-game
special effects and much more.

The basic ideas:
● “Very simple procedural rules can

create very deep visual effects”
● “If lots of little dots all do

something coherent, our brains
will see the thing they do and not
the dots doing it.”

Still from Large Steps in
Cloth Simulation, David
Baraff, Andrew P. Witkin.
Published in SIGGRAPH
1998

Screenshot from the game
Command and Conquer 3
(2007) by Electronic Arts;
the “lasers” are particle
effects.

Particle systems’ honorable history

1962: Ships explode into
pixel clouds in
“Spacewar!”, the 2nd
video game ever.

1978: Ships explode into
broken lines in
“Asteroid”

1982: The Genesis Effect
in “Star Trek II: The
Wrath of Khan”

Fanboy note: You can play the original Spacewar at
spacewar.oversigma.com/ -- the actual original game,
running in a PDP-1 emulator inside a Java applet.

http://spacewar.oversigma.com/

“Position Based Fluids”, SIGGRAPH (2013) - Realtime fluid by Miles Macklin and Matthias Müller (NVIDIA)
Supporting material for Position Based Fluids, Miles Macklin, Matthias Müller, ACM TOG 32(4) (2013)

Particle systems: Fluid simulation

http://www.youtube.com/watch?v=F5KuP6qEuew
http://www.youtube.com/watch?v=F5KuP6qEuew
https://www.youtube.com/watch?v=F5KuP6qEuew
https://mmacklin.com/pbf_sig_preprint.pdf

Particle systems: Cloth simulation

“Interactive Cloth Simulation”, Jim Hugunin - Realtime GPU-driven cloth in Unity game engine
From his talk at Unite 2016, GPU Accelerated High Resolution Cloth Simulation

http://www.youtube.com/watch?v=KBfxnayIlOY
http://www.youtube.com/watch?v=KBfxnayIlOY
https://www.youtube.com/watch?v=KBfxnayIlOY
https://www.youtube.com/watch?v=kCGHXlLR3l8

“CD-MPM: Continuum Damage Material Point Methods for Dynamic Fracture Animation”
Video for SIGGRAPH 2019 for the paper CD-MPM: Continuum Damage Material Point Methods for Dynamic
Fracture Animation, ACM Trans. Graph., Vol. 38, No. 4, Article 119. July 2019

Particle systems: Fracture simulation

http://www.youtube.com/watch?v=lNri-x2nK7o&t=248
http://www.youtube.com/watch?v=lNri-x2nK7o&t=248
https://www.youtube.com/watch?v=lNri-x2nK7o

How does it work?

We want to ask,
● “A particle starts life with initial position

and velocity. Given obstacles / forces /
constraints, where will it wind up?”

or in other words…
● Solve this:

○ Given v=dX/dt=f(X(t),t)
○ Given X(t0) = X0
○ Find X(t) for t > t0

where X(t) is the particle position, dX/dt is the particle velocity, X0
is its initial position and f(X(t),t) is a (complicated? time- and
position dependent?) equation that changes particle velocity

20

This is
an ODE

Particle systems as Ordinary Differential
Equations: Euler’s Method

There are many ways to solve an ODE. The simplest (and
most common in realtime graphics) is Euler’s Method.
● “The forward difference method (Euler’s Method) uses

the rate values at the end of one timestep as though
constant in the next timestep.” --Numerical Methods

This is effective, albeit error-prone
← Each step tangent to the path could take us further
from the true path
← But we will still approximate the integral
‘reasonably’, for small enough steps
← Error can be bounded by short particle lifetimes,
damping, and other practical tricks

21Figure from wikipedia

https://www.cl.cam.ac.uk/teaching/1718/NumMethods/nummeths17slides-asprinted.pdf
https://en.wikipedia.org/wiki/Euler_method

Example 1

A simple example--particles affected by gravity:
v(t) = v0 + gt
(This has a known solution, because physics: X(t) = X0 + v0t + 1/2gt2)

Approximated with Euler’s method:

22

For each frame:

 For each particle:

velocity = velocity

+ timestep * gravity

position = position

+ timestep * velocity

This generalizes nicely to
array-multiply and array-add
operations which scale well
on modern GPU hardware,
allowing you to update
velocity and position in a
single GPU raster operation

Animation: https://www.syncronorm.com/products/depence2/visualization/special-fx/

https://www.syncronorm.com/products/depence2/visualization/special-fx/

Example 2

A more complex example--particles affected by a
position-dependent wind or force:

v(t) = v0 + wind(x(t))

23

For each frame:

 For each particle:

look up wind at position

solve f=ma to find the
acceleration of the wind on the
mass of the particle

velocity = velocity
+ timestep * wind_accel

position = position

+ timestep * velocity

This still generalizes nicely
to modern GPU hardware,
although as complexity rises,
more advanced GPU
languages like CUDA may
be more appropriate

https://docs.google.com/file/d/1u8TLsYUEEP2uZhq-ydzl7KwjOnd4vUBj/preview
https://docs.google.com/file/d/1u8TLsYUEEP2uZhq-ydzl7KwjOnd4vUBj/preview

Common particle system design
1. Particles are generated from an emitter with

initial mass, position, velocity
a. Emit rate, direction, flow, etc are often specified

as a bounded random range (monte carlo)
2. Time ticks; at each tick, particles move by

dt * velocity
a. New particles are generated; expired particles are

deleted
b. Forces (gravity, wind, etc) accelerate the velocity

of each particle
c. Collisions and other interactions update velocity

i. Ex: ‘density’ constraints for liquids
ii. Ex: ‘spring’ constraints for cloth

d. Velocity changes position
3. Particles are rendered

Transient vs persistent particles
emitted to create a ‘hair’ effect
(source: Wikipedia)

Particle systems—rendering
Particles can be rendered as points, textured

polys, primitive geometry...
● Polygons with alpha-blended images

make pretty good fire, smoke, etc

Transitioning one particle type to another
creates realistic interactive effects

● Ex: a ‘rain’ particle becomes an emitter
for ‘splash’ particles on impact

Implicit surfaces or ellipsoid splatting are
popular algorithms for rendering particle
system point clouds as liquid surfaces Ihmsen, Markus & Orthmann, Jens &

Solenthaler, Barbara & Kolb, Andreas &
Teschner, Matthias. (2014). SPH Fluids in
Computer Graphics - Eurographics
State-of-the-art report

“The Genesis Effect” – William Reeves
Star Trek II: The Wrath of Khan (1982)

http://www.youtube.com/watch?v=WpspM16kS_g
http://www.youtube.com/watch?v=WpspM16kS_g

References
Implicit modelling
● D. Ricci, A Constructive Geometry for Computer Graphics, Computer Journal, May 1973
● J Bloomenthal, Polygonization of Implicit Surfaces, Computer Aided Geometric Design,

Issue 5, 1988
● B Wyvill, C McPheeters, G Wyvill, Soft Objects, Advanced Computer Graphics (Proc. CG

Tokyo 1986)
● B Wyvill, C McPheeters, G Wyvill, Animating Soft Objects, The Visual Computer, Issue 4

1986

Marching Cubes
● www.youtube.com/watch?v=M3iI2l0ltbE (very nice visualization)

Particle Systems
● William T. Reeves, “Particle Systems - A Technique for Modeling a Class of Fuzzy Objects”,

Computer Graphics 17:3 pp. 359-376, 1983 (SIGGRAPH 83).
● David Baraff, Andrew Witkin, Large Steps in Cloth Simulation, SIGGRAPH 1998
● Leif Kobbelt and Mario Botsch, A survey of point-based techniques in computer graphics,

Computers & Graphics Volume 28, Issue 6, December 2004, Pages 801-814
● Ihmsen, Markus & Orthmann, Jens & Solenthaler, Barbara & Kolb, Andreas & Teschner,

Matthias. (2014). SPH Fluids in Computer Graphics - Eurographics State-of-the-art report
● www.gdcvault.com/play/1024344/D3D-Async-Compute-for-Physics (nice summary)
● nullprogram.com/webgl-particles/ (nice browser-based demo)

27

https://www.youtube.com/watch?v=M3iI2l0ltbE
https://www.cs.cmu.edu/~baraff/papers/sig98.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0097849304001487
https://www.gdcvault.com/play/1024344/D3D-Async-Compute-for-Physics
http://nullprogram.com/webgl-particles/

